

Project:	Contract:
Angle Design	1472-1
Subject: Angle Design	Sheet No.
Date: 05/01/2021	By:

Concorde Glass Ltd.,
Linx House,
104 Waterloo Rd,
Mablethorpe,
LN12 1LE,
UK.

Angle Design

Analysis By	Checked By
A.N	T.S.

0	05/01/2021	T.S	Issued
Revision	Date	Issued By	Comment

Project:	Contract:
Angle Design	1472-1
Subject: Angle Design	Sheet No.
Date: 05/01/2021	By:

Contents

Actions/Result Summary:	2
Actions:	2
Result Summary:	2
Sketch Of System:	3
Capacity of 75mm×50mm×8mm Angle:	4
Capacity of angle at 1m Leg:	4
Capacity of angle at 2.5m Leg:	4

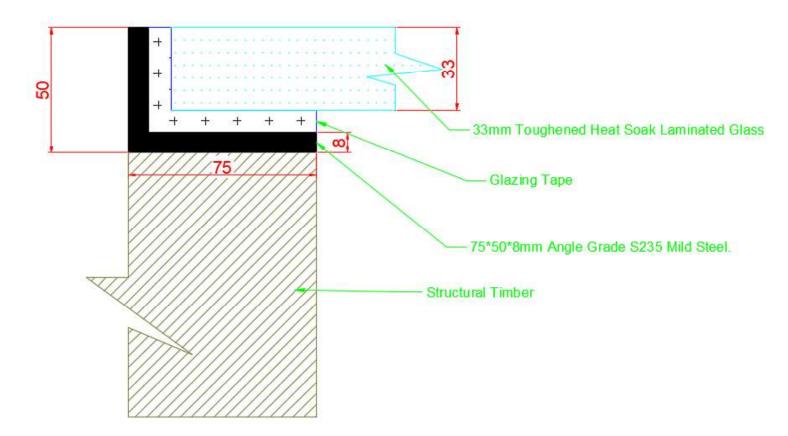
Project:	Contract:
Angle Design	1472-1
Subject: Angle Design	Sheet No.
Date: 05/01/2021	By:

Actions/Result Summary:

Actions:

 $Load = 4kN/m^2$

(As per client Instruction)

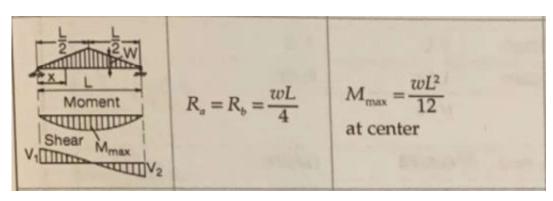

Result Summary:

Angle: 75×50×8mm Angle Grade S235 Mild Steel.

Project:	Contract:
Angle Design	1472-1
Subject:	Sheet No.
Angle Design	3
Date:	By:
05/01/2021	A.N

Sketch Of System:

Project:	Contract:
Angle Design	1472-1
Subject: Angle Design	Sheet No.
Date: 05/01/2021	By:

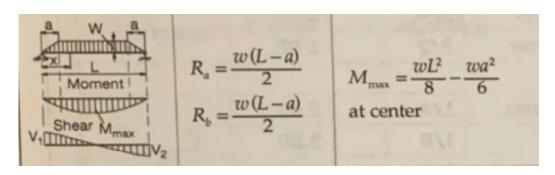

Capacity of 75mm×50mm×8mm Angle:

Capacity of angle at 1m Leg:

Maximum Moment =
$$\frac{\frac{4kN}{m^2} \times 1.5 \times 0.707m \times 1^2m}{12} = 0.354kNm$$

$$Z = \frac{b \times d^2}{6} = \frac{1000 \times 8^2}{6} = 10666.6 \text{mm}^3$$

$$\sigma_{max} = \frac{0.354 \times 10^6}{10666.6} = 33.2 \frac{N}{mm^2} < 235 \frac{N}{mm^2} \quad \text{Okay}$$


Therefore use 50mm×75mm×8mm Grade S235 Mild Steel Plate.

Capacity of angle at 2.5m Leg:

Maximum Moment =
$$(\frac{\frac{4kN}{m^2} \times 1.5 \times 2.5^2 \text{m}}{8}) - (\frac{\frac{4kN}{m^2} \times 0.707 \text{m} \times 1.5 \times 0.5^2 \text{m}}{6}) = 3.137 \text{kNm}$$

$$Z = \frac{b \times d^2}{6} = \frac{2500 \times 8^2}{6} = 26666.6 \text{mm}^3$$

$$\sigma_{max} = \frac{3.137 \times 10^6}{26666.6} = 118 \frac{N}{mm^2} < 235 \frac{N}{mm^2} \quad \text{Okay}$$

Therefore use 50mm×75mm×8mm Grade S235 Mild Steel Plate.