

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN B – 1000x1000mm	Sheet No.
Date: 19/10/2021	By:

Concorde Glass Ltd.,
Linx House,
104 Waterloo Rd,
Mablethorpe,
LN12 1LE,
UK.

Angle Design 1472-2 DESIGN B – 1000x1000mm 6mm Angle

Analysis By	Checked By
A.N	T.S.

1	08/12/2021 06/12/2021	T.S T.S	Amended Amended
0	19/10/2021	T.S.	Issued
Revision	Date	Issued By	Comment

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN B – 1000x1000mm	Sheet No.
Date: 19/10/2021	By:

Contents

Actions/Result Summary:	2
Introduction:	
Actions:	
Assumption:	
Result Summary:	2
Sketch of System:	3
Loading:	4
Capacity of 75x50x6mm Angle:	4

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN B – 1000x1000mm	Sheet No.
Date: 19/10/2021	By:

Actions/Result Summary:

Introduction:

T. Singleton & Associates Consulting Engineers (TSA) have been commissioned by Concorde Glass Ltd to carry out an Angle Design to support 1000×1000 Glass Floor.

Actions:

Load = $4kN/m^2$

(As per client instruction)

Assumption:

Steel Grade S355

Result Summary:

Angle: 75x50x6mm Grade S355 Mild Steel Angle. Weld: Full Penetration Butt Weld at Four corners.

Note: To be fabricated in accordance with BS EN 1090 Execution Class 2

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN B – 1000x1000mm	Sheet No.
Date: 19/10/2021	By:

Sketch of System:

FIGURE 1 SHOWS ELEVATION VIEW

FIGURE 2 SHOWS THE PATTERN OF THE LOAD DISTRIBUTED ON THE GLASS FLOOR

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN B – 1000x1000mm	Sheet No.
Date: 19/10/2021	By:

Loading:

Live load = $4kN/m^2$ (SLS)

Dead load (Self weight of glass) = $0.033m \times 25kN/m^3 = 0.825kN/m^2$ (SLS)

Total load = $(4kN/m^2 \times 1.5) + (0.825kN/m^2 \times 1.35) = 7.11kN/m^2$ (ULS)

Capacity of 75x50x6mm Angle:

 $f_y = 355 MPa$ (Grade S355 Mild Steel, Table 3.1 EN 1993-1-1:2005)

E = 210,000 MPa (Grade S355 Mild Steel, Table 3.1 EN 1993-1-1:2005)

 $I = 405000mm^4$ (75×50×6mm Angle)

 $Z = 8010mm^3 \qquad (75 \times 50 \times 6mm \text{ Angle})$

 $\gamma_Q = 1.5$ (Table 6.10 EN 1991-1-1:2002)

Maximum Moment = $\frac{\frac{7.11\text{kN}}{\text{m}^2} \times 0.5\text{m} \times 1^2\text{m}}{12} = 0.3\text{kNm}$

Maximum Stress:

$$\sigma_{max} = \frac{M}{Z}$$

$$\sigma_{max} = \frac{_{0.3\times10^6}}{_{8010}} = 38\frac{_N}{_{mm^2}} < 355\frac{_N}{_{mm^2}} \quad \text{Okay}$$

Maximum Deflection:

$$\alpha_{\max} = \frac{wl^4}{120EI}$$

$$w = 4.825 kN/m^2 \times 0.5 m = 2.413 kN/m$$

$$\alpha_{max} = \frac{2.413 N/mm \ \times 1000^4 mm}{120 \times 210000 N/mm^2 \times 405000 mm^4} = 0.24 mm < 5 mm \left(\frac{1000}{200}\right) \text{ Okay}$$

Therefore, use 75x50x6mm Grade S355 Mild Steel Angle.